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Abstract. Two phenomena were recently observed: efficient diffuse reflection of very cold
neutrons (VCN) from nano-structured matter for any angle of neutron incidence to the matter
surface, and also quasi-specular reflection of cold neutrons (CN) from nano-structured matter
for small angles of neutron incidence to the matter surface. In both cases, powder of diamond
nanoparticles was used as nano-structured matter, and the measured reflection probabilities by
far exceeded the values known for alternative reflectors. Both these phenomena are already
used in neutron experiments and for building neutron sources. In the present theoretical work,
we consider an option of further increasing the efficiency of nano-structured reflectors due to
replacing spherical nanoparticles by nanorods. We showed that VCN albedo from powder of
randomly oriented nanorods is lower than their albedo from powder of nanospheres of equal
diameter. However albedo of VCN and quasi-specular reflection of CN from powder of long
nanorods oriented parallel to the powder surface exceed those for powder of nanospheres of
equal diameter.

1. Introduction

Efficient neutron reflectors are needed in experiments as well as for building neutron sources.
For ultracold neutrons (UCN) [1-3] (E < u ≈ 10−7 eV), neutron optical potential of matter u
is nearly the ideal reflector, which provides the probability of specular reflection close to unity,
at any temperature of matter and at any incidence angle. Neutrons of higher energy E also can
be totally specularly reflected from mirrors but only at small grazing angles, smaller than some
critical angle θc ≈ √

u/E different for different materials. To increase the critical angle, say,
n times, supermirrors M(n) are produced, which are multi-layers composed of bilayers of two
substances with different optical potentials. The thickness of bilayers are gradually changing
from one bilayer to the next one according to some law [4]. In this way the best mirror M(6.7)
was produced in Japan [5]. It contains 4000 bilayers. Such a supermirror, which though provides
almost 20% reflectivity at θ = θc, nevertheless gives not only specular, but also large fraction of
nonspecular diffuse reflection. It happens because of large interlayer roughnesses appearing as
a result of incommensurability of layer thicknesses and interatomic distances. It is possible to
overcome this defect by using periodic chains of bilayers as reported in [6]. This algorithm had
not yet been technologically realized.

Until recently, efficient reflectors of neutrons with the energy of up to 10−2(3) eV had not
been known. At the energy of ∼ 10−2 eV, neutron wavelength is comparable with inter-atomic
distances thus effects of elastic diffraction and diffuse reflection in respectively ordered and
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disordered matter appear. At even larger energies, inelastic processes, which provide moderation
and reflection of neutrons in nuclear reactors [7], prevail.

Two phenomena were observed recently: efficient diffuse reflection of very cold neutrons
(VCN) from nano-structured matter for any angle of neutron incidence to the matter surface,
and also quasi-specular reflection of cold neutrons (CN) from nano-structured matter for small
angles of neutron incidence to the matter surface [8-15]. In both cases, powder of diamond
nanoparticles was used as nano-structured matter, and the measured reflection probabilities by
far exceeded the values for known alternative reflectors. Both these phenomena are already
used in neutron experiments and for building neutron sources. In the present theoretical work,
we consider an option of further increasing the efficiency of nano-structured reflectors replacing
spherical nanoparticles by nanorods. To be specific, we choose two values of neutron velocity:
1) 50 m/s, as nano-structured reflectors are very efficient at this neutron velocity, and 2) 450
m/s, as, on one hand, the efficiency of nano-structured reflectors made of nanospheres rapidly
decreases at this neutron velocity and, on another hand, such reflectors are highly requested,
for instance, for increasing UCN density in UCN sources based on superfluid helium [16, 17],
used in particular for the GRANIT spectrometer [18], aiming at studies of/with quantum states
of neutrons in gravitational and centrifugal potentials [19, 20], [21-23]. If optical potential of a
nanorod material is much smaller than neutron kinetic energy and if neutron scattering cross
section is much smaller than geometrical cross section of the nanorod then the amplitude of
neutron scattering can be calculated in perturbation theory. These approximations are valid for
all cases of interest in the present work. In this case, the amplitude F (q, l) of neutron scattering
at a nanorod with a radius ρ and a length 2a with an axis along the unit vector l equals:

F (q, l) = N0b

∫

V
d3r exp(iq · r) = N0b

a∫

−a

dz

ρ∫

0

ρ′dρ′
2π∫

0

dφ exp(iqlz + iqρρ
′ cos φ) =

4πN0b

ql
sin(qla)

ρ∫

0

ρ′dρ′J0(qρρ
′) = u0aρ2sinc(qla)

J1(qρρ)
qρρ

, (1)

where sinc(x)=sin(x)/x, u0 = 4πN0b is potential of neutron interaction with the nanorod matter
divided by a factor h̄2/2m (m is the neutron mass, h̄ is the reduced Planck constant), N0 is
the number of atoms in the unit volume of the nanorod, b is the length of neutron coherent
scattering on a nucleus of the nanorod matter, q = k0 − k is the transferred momentum, k0, k

are momenta of the neutron before and after scattering, ql = q · l, qρ =
√

q2 − q2

l , J0(x) and
J1(x) are Bessel functions; and we also used the following expressions:

J0(x) =
∫

2π

0

dφ

2π
exp(ix cos φ),

∫ x

0

x′dx′J0(x′) = xJ1(x).

In this work we consider neutron scattering on diamond nanorods. The potential of
interaction of a neutron with a nanorod matter is always assumed to be equal to 300 neV,
as it is for neutron scattering at crystal diamond. This approximation is valid in the first order
for nanospheres [24] as well as for nanorods [25], because their densities are close to the density
of bulk diamond, and their shells are not very thick [26, 27], [28]. However, more accurate but
also more bulky descriptions will be required for concrete reflector realizations. The refection is
understood here as albedo, i.e. the probability of neutron reflection integrated over all backward
angles. We will calculate albedo following works [29-31], and will remind below briefly the
calculation method.
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2. Method of albedo calculation

First we will define notations. A neutron moving along a solid angle Ω with the polar axis
along the internal normal to the matter surface is defined by the state vector |Ω〉. An angular
distribution P (Ω) will be characterized by the state vector:

|P 〉 =
∫

4π
P (Ω)dΩ|Ω〉. (2)

The norm of this state NP =
∫
4π P (Ω)dΩ is calculated by means of multiplication of eq. (2)

from the left by a meter

|m〉 =
∫

4π
dΩ|Ω〉,

using a natural relation 〈Ω||Ω′〉 = δ(Ω−Ω′). In particular, isotropic distribution of incident and
reflected neutrons corresponds to the state

|Pis〉 =
∫

2π

| cos θ|
π

dΩ|Ω〉. (3)

Its norm is unity.
A scatterer, which transforms a neutron state |Ω′〉 to a state |Ω〉 with a probability w(Ω ← Ω′),

is described by means of an operator

Ŵ =
∫

4π
|Ω〉w(Ω ← Ω′)〈Ω′|dΩdΩ′.

A neutron from a state (2) is scattered into the state:

|P ′〉 = Ŵ |P ′〉 =
∫

4π
|Ω〉w(Ω ← Ω′)P (Ω′)dΩdΩ′ =

∫

4π
P ′(Ω)|Ω〉dΩ,

where
P ′(Ω) =

∫

4π
w(Ω ← Ω′)P (Ω′)dΩ′.

In order to calculate albedo RD from a layer of powder with a finite thickness D, one first
calculates albedo R∞ from an infinitely thick layer. For this purpose, one splits a layer of small
thickness ξ from the infinite one; scattering on this layer is calculated using perturbation theory,
and it is presented in a form of a reflection ρ̂ξ and a transmission τ̂ ξ operators. In order to find
the operator R̂∞ of reflection from an infinitely thick layer for incident neutrons in a state |Ω0〉,
one has to know their distribution |Xξ〉 = X̂ξ|Ω0〉 behind the thin layer. For the operator X̂ξ

one could write a self-consisting equation

X̂ξ = τ̂ ξ + ρ̂ξR̂∞X̂ξ, (4)

which shows that X̂ξ is constructed from the transmission through the layer τ̂ ξ and from the
contribution of X̂ξ itself, because a neutron behind the layer ξ is reflected from the infinite layer
then is reflected ones again from a layer ξ, and returned to the infinitely thick layer, where the
state |Xξ〉 is formed together with the part characterized by the transmission τ̂ ξ.

If we know X̂ξ , we can write an equation for R̂∞:

R̂∞ = ρ̂ξ + τ̂ ξR̂∞X̂ξ. (5)
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From (4) it follows

X̂ξ =
(
Î − ρ̂ξR̂∞

)−1

τ̂ ξ, (6)

where Î =
∫
4π |Ω〉〈Ω|dΩ is a unit operator. Substituting of (6) into eq. (5) gives

R̂∞ = ρ̂ξ + τ̂ ξR̂∞
(
Î − ρ̂ξR̂∞

)−1

τ̂ ξ. (7)

Operators ρ̂ξ and τ̂ ξ are related to macroscopic scattering cross sections:

ρ̂ξ = ξΣ̂b, τ̂ ξ = Î + ξΣ̂f − ξΣtŜ, (8)

where

Σ̂b =
∫

n·Ω<0

dΩ
∫

n·Ω′>0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′| =

∫

n·Ω>0

dΩ
∫

n·Ω′<0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′| (9)

the operator of back scattering from the left or from the right,

Σ̂f =
∫

n·Ω>0

dΩ
∫

n·Ω′>0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′| =

∫

n·Ω<0

dΩ
∫

n·Ω′<0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′|

(10)
is the operator of forward scattering from the left or right, Σs(Ω ← Ω′) is the differential
macroscopic scattering cross section, Σt = Σs + Σa is the total macroscopic cross section,
consisting of the integral scattering Σs and absorption Σa cross sections, and

Ŝ =
∫

2π

|Ω〉 dΩ
cos θ

〈Ω| (11)

is an operator, which takes into account that the number of scatterers along the neutron path
increases with increasing of the incidence angle.

At small value of ξ eq. (7) can be linearized and reduced to

R̂∞Σ̂bR̂∞ +
(
Σ̂f − ΣtŜ

)
R̂∞ + R̂∞

(
Σ̂f − ΣtŜ

)
+ Σ̂b = 0. (12)

We suppose that the distribution of reflected neutrons is isotropic, and represent the solution of
(12) in the form

R̂∞ = R∞
∫

n·Ω<0

|Ω〉 | cos θ|
π

dΩ
∫

n·Ω′>0

dΩ′〈Ω′| = R∞|Pis〉〈m|. (13)

Substitute it in (12) and multiply (12) from the left by 〈m| and from the right by |Pis〉. Then
we get

R2

∞Σb + 2R∞(Σf − Σt) + Σb = 0, (14)

where

Σb =
∫

n·Ω<0

dΩ
∫

n·Ω′>0

Σs(Ω ← Ω′)
dΩ′

2π
=

∫

n·Ω>0

dΩ
∫

n·Ω′<0

Σs(Ω ← Ω′)
dΩ′

2π
, (15)

Σf =
∫

n·Ω>0

dΩ
∫

n·Ω′>0

Σs(Ω ← Ω′)
dΩ′

2π
=

∫

n·Ω<0

dΩ
∫

n·Ω′<0

Σs(Ω ← Ω′)
dΩ′

2π
(16)
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are macroscopic cross sections of backward and forward scattering. Since Σt = Σs + Σa =
Σb + Σf + Σa, then solution of eq. (12) can be represented in the form

R∞ =
√

Σa + 2Σb −
√

Σa√
Σa + 2Σb +

√
Σa

=
√

1 + 2Σb/Σa − 1√
1 + 2Σb/Σa + 1

. (17)

In order to calculate albedo from a wall of a finite thickness, one has to know a law of
attenuation of neutron intensity in the matter. It follows from eq. (6). After linearization of it
at small ξ, substitution of (13) and multiplication from left by 〈m| and from the right by |Pis〉
one gets

〈m|X̂ξ|Pis〉 = 1 − ξ/L ≈ exp(−ξ/L),

where
1/L = 2

√
Σa + 2Σb

√
Σa = 2Σa

√
1 + 2Σb/Σa. (18)

Thus X̂z at a depth z can be represented as

X̂z = |Pis〉 exp(−z/L)〈m|. (19)

For calculating reflection R̂D and transmission T̂ D from/through a layer of a thickness D
we use eq-s. (4), (5) splitting a layer of a finite thickness D from the semiinfinite one. The
equations then look:

X̂D = T̂ D + R̂DR̂∞X̂D, R̂∞ = R̂D + T̂ DR̂∞X̂D. (20)

They can be resolved with respect to R̂D and T̂ D for known X̂D and R̂∞. Assuming
R̂D = RD|Pis〉〈m|, we get

RD = R∞
1 − exp(−2D/L)

1 − R2∞ exp(−2D/L)
. (21)

It follows from (17) and (18) that in order to calculate RD, which will be named below as
simply R, one has to get macroscopic cross sections Σb and Σa, which are averaged over angles
differential cross sections.

3. Calculation of macroscopic cross sections

From the scattering amplitude (1), one could calculate a differential cross section

dσ(q, l)/dΩ = |F (q, l)|2 = |u0|2a2ρ4sinc2(qla)

∣∣∣∣∣
J1(qρρ)

qρρ

∣∣∣∣∣
2

. (22)

Consider an angular distribution of scattered neutrons. The polar axis is directed along the wave
vector k0 of the incidence wave, and the axis is in the plane of vectors (k0, l) perpendicular to
k0. where l is a unit vector along the rod axis. Then k0 · l = k cos θ0 and

ql = q · l = k(cos θ0 − cos θ0 cos θ0 − sin θ sin θ0 cos φ), (23)

where θ, φ are the angles of the vector k of the scattered wave. Eq. (22) can be integrated over
angle φ. Taking into account the symmetry of eq. (23), we get

d

d cos θ
σ(θ, θ0) = |u0|2a2ρ4

∫ π

0

2dφ sinc2(qla)

∣∣∣∣∣
J1(qρρ)

qρρ

∣∣∣∣∣
2

. (24)
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After multiplication of the differential cross section (24) by a number of nanorods N1 in the unit
volume, we get the macroscopic differential scattering cross section Σ:

Σ(θ, θ0) = N1

d

d cos θ
σ(θ, θ0) = A

∫ π

0

2dφ sinc2(qla)

∣∣∣∣∣
J1(qρρ)

qρρ

∣∣∣∣∣
2

, (25)

where
A = γ|u0|2aρ2/2π,

and the value γ = N1V1 = N12πρ2a characterizes a fraction of volume occupied by nanorod
matter. In the following we will assume γ = 0.1. In order to describe precisely some concrete
neutron nanorod reflectors we will need a more accurate model. The dimension of the coefficient
A is 1/cm, and its value depends of nanorod parameters. In order to compare neutron cross
sections for different nanorods, we introduce a convenient common dimensional coefficient

A0 = γ|u0|2ρ3

0
/2π. (26)

If nanorod radius is ρ0 = 10 nm, then A0 = 3.4 µm−1 (for diamond 1/
√

u0 = 8.27 nm). The
macroscopic cross section of neutron scattering (25) can be represented in the following form:

Σ(θ, θ0) = 2A0

ρ3

β

∫ π

0

dφ sinc2(qlα)

∣∣∣∣∣
J1(qραβ)

qραβ

∣∣∣∣∣
2

, (27)

with dimensionless parameters q = q/k, α = ak, β = ρ/a, ρ = ρ/ρ0. The macroscopic differential
cross section Σ(θ, θ0) of scattering of a neutron on powder of nanorods, in units 2A0ρ

3/β, is shown
in Fig. 1 (a = 1000 nm) and in Fig. 2 (a = 10 nm), as a function of the neutron scattering
angle θ provided the neutron incidence angle θ0 equals 0, π/4 and π/2, the nanorod radius =
0=10 nm, and for the neutron velocity v = 450 m/s.

Figure 1. Dimensionless differential cross section Σ(θ, θ0) of the neutron scattering on nanorods
as a function of the neutron scattering angle θ and the neutron incidence angle θ0. The angles
are measured relative to the nanorod axis, v = 450 m/s, a = 1000 nm.

Angles are given in radians. Cross sections of neutron scattering on nanorods with the half-
length equals radius a = ρ are approximately equal to the cross section of neutron scattering
on spherical nanoparticles of equal radius, therefore we will use in the following for simplicity
the same analytical expressions for qualitative comparison of results for long nanorods and

- 382 -

JAEA-Conf 2015-002



Figure 2. The same as in Fig. 1, but for the nanorod half-length of a = ρ = 10 nm.

for spherical nanoparticles. The average angle of neutron scattering on nanoparticles is equal
approximately to the ratio of neutron wavelength to nanoparticle size. Thus, neutrons scatter
on long nanorods to smaller angles (Fig. 1) then they scatter on short nanorods (Fig. 2).
And the cross sections of neutron scattering to the zero angles are equal to each other as well
as to π/2. It is interesting to note some increase of cross sections for backscattering, which
is particularly visible for nanorods. It is useful to consider separately the cases of chaotic
and ordered orientation of long nanorods in reflectors. In section 4 we consider the reflection
of isotropic VCN flux from a reflector built of chaotically oriented nanorods; in section 5 we
analyze the reflection of CN from a reflector built of nanorods with the axis parallel to the
reflector surface while they are isotropically oriented over the azimuth angle.

4. Cross section of backward neutron scattering on chaotically oriented nanorods

To find scattering of neutrons on isotropically distributed nanorods one can average (22) over
directions l for a given vector q, which is chosen as a polar axis. In that case ql = q cos θl and
qρ = q sin θl, and one should average (22) over angle θl of nanorod orientation. After averaging
and multiplication by particle density N1 we get in units A0ρ

3/β:

〈dΣs(q, l, α, β)/dΩ〉 =
∫

1

0

dx sinc2(xqα)

∣∣∣∣∣
J1(

√
1 − x2qαβ)√

1 − x2qαβ

∣∣∣∣∣
2

. (28)

In order to calculate the neutron albedo from powder of nanorods, we should know the cross
section of backward scattering relative to the normal to the powder surface. We define the
normal to surface to be the polar axis directed towards matter. Then the q for backward
scattered neutrons is

q =
√

2(1 + cos θ cos θ0 − sin θ sin θ0 cos φ), (29)

where θ and φ are the scattered neutron angles, and axis is in the incidence plane. We denote
y = cos θ cos θ0 = sin θ sin θ0 cos φ, integrate over dΩ = dφd cos θ, average over directions θ0 of
incidence neutrons, and present this expression in the form

Σs(α, β) =
∫

1

−1

dyδ(y − cos θ cos θ0 + sin θ sin θ0 cos φ)dΩd cos θ0S(y, α, β), (30)
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Figure 3. Dimensionless macroscopic cross section of neutron backward scattering Σb(α, β)/β
on powder of long nanorods (Σbl(v)) with the half-length of a = 1000 nm and on powder of
short nanorods (Σbs(v)) with the half-length of a = 10 nm. In both cases, the nanorod radius
equals ρ = 10 nm.

where

S(y, α, β) =
∫

1

0

dx sinc2(x
√

2(1 + y)α)

∣∣∣∣∣
J1(

√
1 − x2

√
2(1 + y)αβ)√

1 − x2
√

2(1 + y)αβ

∣∣∣∣∣
2

. (31)

After integration of eq. (30) over dφ we get

Σb(α, β) =
∫

1

−1

dyI(y)S(y, α, β), (32)

where

I(y) =
∫

1

0

d cos θ

∫
1

0

d cos θ0

Θ(sin2 θ sin2 θ0 > (cos θ cos θ0 − y)2)
sin2 θ sin2 θ0 − (cos θ cos θ0 − y)2

, (33)

and Θ is the step-function, which is equal to 1 provided inequality in its argument, and is equal
zero otherwise. Function I(y) is calculated in (A4). It is equal to

I(y) = πΘ(y > 0) − arctan

(√
1 − y2

y

)
. (34)

Fig. 3 shows the dimensionless macroscopic cross section Σb(α, β) of neutron scattering as a
function of its velocity v for powder of nanorods with the half-length a = 1000 nm, and a = 10
nm.

5. Absorption cross section
The total cross section is defined by the imaginary part of the forward scattering amplitude (1):

�(F (q, l))q=0 = u′′
0
aρ2/2 = N0kσl(k)aρ2/2, (35)

and it actually describes absorption, as scattering in the perturbation theory is not included in
this expression. The macroscopic cross section of absorption is equal:

Σa(k) =
4π

k
N1�(F (q, l))q=0 =

4π

2k
N1N0kσl(k)aρ2 =

γu2

0
ρ3

0

2π

kT σl(kT )
2kbu0ρ3

0

= A0

Cρ

αβ
, (36)

- 384 -

JAEA-Conf 2015-002



where
C =

kT σl(kT )
2bu0ρ2

0

=
σl(kT )

2bkT (u0/k2

T )ρ2

0

. (37)

T denotes the ambient temperature, ρ0 = 10 nm, b = 6.65 fm, and u0/k2

T = Ec/ET = 12×10−6.
In the following, we will consider two cases of particular interest:

(i) Nanoparticles at a so small temperature that neutron heating in powder can be neglected,
and also neutron cooling would even increase albedo. Also hydrogen in powder is substituted
by deuterium, and neutron absorption in deuterium can be neglected. It is the case of
most efficient reflector, which could be built using the principle considered in the present
article. In this case, absorption cross section is attributed to one carbon atom; it is equal
σl(kT ) = 0.0035 bn, and C = C0 = 6.28 × 10−7.

(ii) Nanoparticles at the ambient temperature, with a realistic admixture of hydrogen. As
nanopowder reflectors are most efficient for small neutron energy compared to the ambient
temperature (energy), then inelastic neutron scattering is equivalent to neutron loss. And
inelastic scattering is governed by a relatively small admixture of hydrogen in powder. As
shown in [32], the minimum admixture of hydrogen atoms, which can be achieved by means
of heating and degassing of powder, corresponds to the following composition C12.4+0.2H,
and the total cross section of neutron scattering on the atom of residual hydrogen at the
ambient temperature, measured for neutrons with the wavelength of 4.4 Å, equals 108 ± 2
bn. In this case, the efficient cross section per one atom of the composition is σl(kT ) = 3.56
bn. Thus the most pessimistic estimation gives C = Ca = 5.2× 10−4. Neutron albedo from
an infinitely thick layer of nanorods is equal [25-27] (17):

R∞(α, β, ρ, C) =
√

1 + Q(α, β, ρ, C) − 1√
1 + Q(α, β, ρ, C) + 1

, (38)

where
Q(α, β, ρ, C) =

2Σb

Σa
=

2
C

Σb(α, β)
αβ

ρ
. (39)

Calculations of neutron albedo from an infinitely thick layer of nanorods, as a function of the
velocity v of incidence neutrons for long (a = 1000 nm) and short (a = 10 nm) nanorods, show
that neutron albedo from nano-structured powder for the neutron velocity of v = 400 m/s is
significantly larger than the coefficient of neutron reflection 5 × 10−9 from continuous matter.

Besides the reflection from infinite matter, albedo is characterized also by the exponential
attenuation in matter exp(−x/L), i.. by the attenuation length (18):

1/L = 2
√

Σa + 2Σb

√
Σa = 2Σa

√
1 + Q(α, β, ρ, C) = L−1

0
(C)κ−1(α, β, ρ, C). (40)

Substitution of (36) gives

L−1

0
(C) = 2CA0, κ(α, β, ρ, C) =

αβ

ρ
√

1 + Q(α, β, ρ, C)
. (41)

Consider now the neutron reflection from a layer of nanopowder with a finite thickness d.
Albedo from such a layer is defined by formula:

R(d, α, β, ρ, C) = R∞(α, β, ρ, C)
1 − exp(−2d/L(α, β, ρ, C))

1 − R2∞(α, β, ρ, C) exp(−2d/L(α, β, ρ, C))
. (42)

Fig. 4 shows dependence R(v) for the nanopowder thickness of d = 3 cm for long and short
nanorods with the neutron loss coefficients C0 and Ca. The figure shows that the neutron albedo
from a sufficiently thin layer of nanoparticles is higher by 6-7 orders of magnitude than neutron
reflection from continuous matter.
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Figure 4. Albedo from powder of nanorods of length: 1, 3) a = 10 nm; 2, 4) a = 1000 nm;
with absorption parameter C equal to 1. 2) C0; 3, 4) Ca. In all cases, the nanorod radius equals
ρ = 10 nm. It is seen that quasi spherical nanorods reflect better than long ones.

6. Axes of nanorods are oriented parallel to the interface

Now consider the case when nanorods are oriented parallel to the powder surface. We define the
polar axis along the normal to the interface directed towards matter, and axis in the incidence
plane then:

ql = sin θ0 cos χ − sin θ cos(φ − χ), (43)

where χ is the azimuth angle of the nanorod orientation, and θ, φ are scattering angles. Then

qρ =
√

2(1 + cos θ cos θ0 − sin θ sin θ0 cos φ) − (sin θ0 cos χ − sin θ cos(φ − χ))2. (44)

After averaging over nanorod orientation, integrating over backward scattering angles, and
averaging over angular distribution of incident neutrons, we get

Σb(α, β, ρ) =
∫

1

0

dx

∫
1

0

dyΣb,θ(x, y, α, β, ρ), (45)

where

Σb,θ(x, y, α, β, ρ) =
ρ3

β

∫
2π

0

dφ

∫
2π

0

dχ

2π
sinc2(αql(x, y, α, β))

∣∣∣∣∣
J1(αβ qρ(x, y, α, β))

αβ qρ(x, y, α, β)

∣∣∣∣∣
2

. (46)

Numerical integration of (46) shows the macroscopic cross section of neutron backward
scattering as a function of x = cos θ for given values of y = cos θ0. This dependence for
long nanorods (β = 0.01) at ρ = 1, the neutron velocity v = 450 m/s and two values of cosine
of the incident angle y = 0, 3 and y = 0, 8 is shown in fig. 5. One can see the peaks in the
vicinity of cos θ = cos θ0, which correspond to quasi-specular reflection. For isotropic distribution
of nanorods the quasi specular reflection will possibly appears only after introduction of an
interference between the waves scattered on different grains.

Integration in (45) and substitution into albedo formulas gives the results shown in fig. 6.
Here we show neutron albedo from a layer with the thickness of 3 cm as a function of the
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Figure 5. Dependence Σbθ(cos θ0, cos θ, α, β, ρ) on cos θ at 1) cos θ0 = 0.3; 2) cos θ0 = 0.8 – for
long nanorods: β = 0.01, ρ = 10 nm and for v = 450 m/s.

neutron speed v, m/s; the layer consists of long and short nanorods oriented along the interface
but isotropically with respect to the azimuth around the interface normal. Albedo is calculated
for small and large content of hydrogen. It is seen that albedo from long nanorods is higher than
that from short quasi spherical ones. The results of calculations are in good agreement with the
experimental observations for v in the range 50-150 m/s [11].

Figure 6. . Albedo Rd(v) from powder layer of thickness d = 3 cm composed of: 1, 3) long
(a = 1000 nm) and 2,4) short (a = 10 nm) nanorods with the radius ρ = 10 nm; for two loss
coefficients 1, 2) C = C0 = 6.28 × 10−7 and C = Ca = 5.2 × 10−4 as a function of neutron
velocity v, m/s.

7. A problem of accounting for the real angular distribution

We have assumed above that albedo is calculated for the isotropic distribution of reflected and
incident neutrons. How would change the results, if one does not keep these assumptions? In
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order to answer this question, one has to solve eq. (12) in its general form. It is an extremely
complex problem involving a non-linear integral equation. It can be simplified, provided a
natural assumption that all functions depend only on cosines of incidence and reflected angles.
Then the integral equation can be reduced by discretization to an algebraic matrix equation of
the second order of the form

ẐÂẐ + B̂Ẑ + ẐĈ + D̂ = 0. (47)

However solving such a quadratic matrix algebraic equation also is a complex problem. In fact, a
quadratic matrix equation for the matrix N×N is equivalent in the general case to a polynomial
equation with the power 2N2. And even, if one calculates numerically all its roots, there will
stay a problem of choosing a proper set of roots. However it is possible to shed light on a role
of scattering anisotropy by suggesting solution of eq. (12) not in the purely isotropic form (13),
but as a combination of isotropic and specular distributions as shown in (47),

R̂∞ = R∞
∫

nΩ<0

|Ω〉 | cos θ|
π

dΩ
∫

nΩ>0

dΩ′〈Ω′| +
∫

nΩ<0

dΩ|Ω〉nΩ<0f(Ω)〈Ω|nΩ>0, (48)

where the specular part is presented by the diagonal term. This option will be considered in
another work.

8. Conclusion

In the present theoretical work we considered a possibility to increase efficiency of nano-
structured reflectors of slow neutrons by means of substituting spherical nanoparticles by
nanorods. We show that albedo of VCN from powder of disordered nanorods is smaller than the
albedo from powder of nanospheres. However, albedo of VCN and quasi-specular reflection of
CN from powder of nanorods oriented parallel to the reflector surface exceed respective values
for powder of nanospheres.
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Appendix A. Calculation of the integral (19)

Denote cos θ = v, cos θ0 = u. Then integral (19) is presented in the form

I(y) =
∫

1

0

du

∫
1

0

dv
Θ(1 − u2 − v2 + u2v2 > y2 − 2yuv)

1 − u2 − v2 + u2v2 − y2 + 2yuv
=

∫
1

0

duI1(u, y), (A.1)

where integral I1(u, y), after variable substitution x = (v − uy)/sqrt1 − u2sqrt1 − y2 is reduced
to

I1(u, y) =

x2(u,y)∫

−x1(u,y)

dx
Θ(x2 < 1)√

1 − x2
=

π

2

(
1 + Θ

(
u >

√
1 − y2

) |y|
y

)
+

+arcsin(x1(u, y))Θ
(

u <
√

1 − y2

)
. (A.2)

Limits of integration in (2) are

x1(u, y) =
uy√

(1 − u2)(1 − y2)
, x2(u, y) =

1 − uy√
(1 − u2)(1 − y2)

. (A.3)
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Modulus of these limits have to be smaller than unity, but x2(u, y) > 1 for any values of u and
y, therefore the upper limit, due to the inequality in the integral, has to be replaced by unity.
The lower limit, |x1(u, y)| ≤ 1, only when u ≤ u1(y) =

√
1 − y2. If u > u1(y) =

√
1 − y2, then

modulus of the lower limit has to exceed unit and thus the lower limit should be replaced by
-1 or +1, which depends on the sign of y. Accounting for all these conditions leads to (A2).
Substitution of (2) into (1) and integration by parts of the term containing arcsin provides the
final result:

I(y) =
∫

1

0

duI1(u, y) =
π

2

[
1 + (1 +

√
1 − y2)

y

|y|
]

+
√

1 − y2)
y

|y|
π

2
−

−
∫ √

1−y2

0

yudu

(1 − u2)
√

1 − u2 − y2
= πΘ(y > 0) − arctan

(√
1 − y2

y

)
. (A.4)
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